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Introduction (1)

This presentation focuses on the electromagnetic interactions of Dirac

and Weyl particles, showing that under special conditions they can

exhibit extraordinary behavior.

Specifically, we have shown that all Weyl particles, and under certain

conditions Dirac particles, can exist in the same quantum state under a

wide variety of electromagnetic 4-potentials and fields, infinite in

number, which are explicitly calculated.



Introduction (2)

We have also discussed a set of particularly interesting solutions to the
Weyl equations, showing that Weyl particles can exist in localized states
even in the absence of electromagnetic fields.

Furthermore, the localization of the Weyl particles can be easily
adjusted using simple electric fields.

Based on these results we have proposed a novel device for controlling
the flow of information at a rate of up to 100 Petabits per second using
Weyl fermions.



Introduction (3)

These results are expected to find interesting applications in several
fields of science and technology, such as nanophotonics,
nanoelectronics, laser physics, solid state physics, etc., providing new
pathways for further development in these fields, both in theory and
applications.
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Our results are summarized in the following 
articles (2)
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Inverse problem

Given the wave function Ψ, what can we say about the electromagnetic
4-potential Αμ which is connected to Ψ by Dirac’s equation?

Is Aμ uniquely determined, and if not, what is the extent to which it is
arbitrary?

C. J. Eliezer, A Consistency Condition for Electron Wave Functions, Camb. Philos. Soc. Trans. 54 (1958) 247.



Answer (1)
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If                        then  Ψ  corresponds to a unique 4-potential defined by 
the formula

†  0  

H. S. Booth , G. Legg and P. D. Jarvis, Algebraic solution for the vector potential in the Dirac equation, J. Phys. A: Math. Gen. 
34 (2001) 5667



Answer (2) – Theorem 5.4 in [1]

If and then Ψ  corresponds to an infinite
number of real 4-potentials of the form

where f is an arbitrary real function of the spatial coordinates and time
and

Remark: At least two of the above 4-potentials correspond to different
electromagnetic fields
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The above solutions are called degenerate



Answer (3)

If and then Ψ  can be written in the form

or

where ψ is solution to the Weyl equations.
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Weyl equations

corresponding to massless particles with spin parallel to their
propagation direction (positive helicity)

corresponding to massless particles with spin anti-parallel to their
propagation direction (negative helicity)
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On the degeneracy of the solutions to the 
Weyl equations – Theorem 3.1 in [1]
All the solutions to the Weyl equations are degenerate, corresponding to an
infinite number of real 4-potentials, given by the formulae

where f is an arbitrary real function of the spatial coordinates and time and

Here the plus and minus sign correspond to the cases of negative and
positive helicity respectively.
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On the degeneracy of free Dirac particles

It is proven that the wavefunction Ψ of a free Dirac particle is
degenerate if and only if the particle is massless.

In this case, the wavefunction Ψ corresponds to an infinite number of
4-potentials of the form

where s(r,t) is an arbitrary real function of the spatial coordinates and
time, and θ, φ are the angles defining the propagation direction of the
particle in spherical coordinates.

( ) ( ) ( )0 1 2 3, , , 1, sin cos , sin sin , cos ,a a a a s t    = − − − r



Electromagnetic fields conserving the state of 
massless free Dirac particles
Setting the electric potential φ(r,t) = a0/q

the magnetic vector potential A(r,t) = - (1/q) (a1 , a2 , a3) 

and using the relations

we obtain the electromagnetic fields conserving the state of massless free Dirac
particles
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The violation of Ohm’s law

If the arbitrary function g depends only on time, the magnetic field becomes
zero, and the electric field takes the simpler form

The same result is also true for free Weyl particles.

Consequently, the state of the particles will not be affected in the presence
of an electric field, of arbitrary magnitude and time dependence, applied
along their direction of motion.

This practically means that the electric current transferred by charged
particles in degenerate states will not change if a voltage, of arbitrary
magnitude and time dependence, is applied along the direction of motion of
the particles, contrary to what is expected in the framework of classical
physics.

( ) ( ), sin cos sin sin cos
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t
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On the interaction of massless Dirac and Weyl 
particles with electromagnetic waves (1)
Assuming that the arbitrary function g(r,t) is of the form

the electric and magnetic field conserving the state of free massless
Dirac or Weyl particles moving along the +z direction become

corresponding to a plane electromagnetic wave propagating along the
+z direction.
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On the interaction of massless Dirac and Weyl 
particles with electromagnetic waves (2)
Here, 𝐸𝑤1, 𝐸𝑤2, 𝛿𝑤1, 𝛿𝑤2 are arbitrary real constants corresponding to
the amplitude and phase of the x and y component of the electric field
of the wave respectively, and 𝑘𝑤 is a real parameter corresponding to
the wavenumber.

Thus, the state of free massless Dirac or Weyl particles is not affected
by a plane electromagnetic wave, e.g. a laser beam, of arbitrary
polarization, propagating along the direction of motion of the
particles.

Consequently, particles and waves propagate without interacting with
each other, which obviously is not true for “ordinary” charged particles.



A proposed method for experimentally detecting the transition 
between degenerate and non – degenerate states

,



Regarding the practical applications of these 
results (1)
All the above results indicate that free massless Dirac and Weyl particles have the
property to interact with electromagnetic fields in an extraordinary way, like no
other known charged particle, behaving as charged photons.

The problem is that massless Dirac and Weyl particles do not exist in nature as
standalone entities.

Consequently, are all these remarkable results useless?

No, because it has been shown recently that massless Dirac and Weyl particles can
exist in certain materials as “quasi-particles”, corresponding to collective excitations
of the electrons.

K. S. Novoselov et al, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197.
D. Ciudad, Weyl fermions: Massless yet real, Nat. Mater. 14 (2015) 863.
H. -H. Lai, S. E. Grefe, S. Paschen and Q. Si, Weyl-Kondo semimetal in heavy-fermion systems, P. Natl. Acad. 
Sci. USA 115 (2018) 93.



Regarding the practical applications of these 
results (2)
Thus, the property of massless Dirac and Weyl particles to be able to
exist in the same quantum state under a wide variety of different
electromagnetic fields is expected to provide new opportunities
regarding the development of novel devices and applications involving
materials supporting massless quasi-particles, such as graphene, Weyl
semi-metals, etc.



Solutions to the Weyl equations with 
particular interest
It can be shown that all spinors of the form

where h is an arbitrary real function of the spatial coordinates and
time, are solutions to the Weyl equation

corresponding to particles with positive helicity or antiparticles with
negative helicity.

( )

( ) ( )
( )

cos
2

exp , , ,

sin
2

i t

t

ih x y z t
t

e







  
  

  
 =   

 
 

  
  

0i a 

    +  =



Solutions to the Weyl equations with 
particular interest (2)
Similarly, all spinors of the form

are solutions to the Weyl equation

corresponding to particles with negative helicity or antiparticles with
positive helicity.
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Electromagnetic 4-potentials corresponding 
to these solutions (1)
The electromagnetic 4-potentials corresponding to the spinors ψ are of
the form

where

and

As usually, s is an arbitrary real function of the spatial coordinates and
time.
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Electromagnetic 4-potentials corresponding 
to these solutions (2)
Similarly, the electromagnetic 4-potentials corresponding to the spinors
ψ΄ are of the form

where

and
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Electromagnetic fields corresponding to these 
solutions (1)
The electromagnetic fields corresponding to the 4-potentials

are given by the formulae
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Electromagnetic fields corresponding to these 
solutions (2)
Similarly, the electromagnetic fields corresponding to the 4-potentials

are given by the formulae

( )0 1 2 3

1 1 1 1
, , , , sin , cos ,

2 2 2 2

h d h d h d h d
a a a a

t dt x dt y dt z dt

   
 

    
    = + − + + 

    

2 2 2

2 2 2

1 1 1
cos sin sin cos

2 2 2

d d d d d d d

q dt dt dt q dt dt dt q dt

      
   

   
+ − − +=   



 

=

 
−

= −

i j kE

E

B 0



On the property of Weyl particles to exist at different
quantum states in zero electromagnetic field (1)

It can be easily confirmed that if the following condition holds

the electromagnetic field becomes zero.
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On the property of Weyl particles to exist at different
quantum states in zero electromagnetic field (2)

Consequently, Weyl particles in zero electromagnetic field exhibit one
of the following behaviors:
➢ move as free particles, assuming that

➢exist in a localized bounded state in the case that

➢ exist in an intermediate state, bound on the x-y plane, and free along
the z-axis, corresponding to

,

0d dt d dt = =
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The trajectory of a classical particle with the same velocity as 
the Weyl one  for                  and                      , corresponding to 
a constant electric field                  , applied for  

,

 0,10t

( ) 4t = ( ) 220 2t t t = −

( )2 q=E k



The projection of the motion of a classical particle with the 
same velocity the Weyl one, on the x-y plane. The settings are 
the same as in the previous figure. 

,



The trajectory of a classical particle with the same velocity as 
the Weyl one  for                  and                      , corresponding to 
a constant electric field                  , applied for  

,

 0,10t

( ) 2t = ( ) 220 2t t t = −

( )2 q=E i

Thus, the localization of Weyl
particles can be fully controlled,
and modified, using simple
electric fields, perpendicular to
the direction of motion of the
particles.
Furthermore, Weyl particles can
be localized and delocalized at
exceptionally high speeds. For
example, they can be localized to
a region of diameter 100 nm in a
time interval well below 1 ps, for
an electric field equal to
10V/mm.



Based on these results we have proposed a novel device for controlling 
the flow of information at a rate of up to 100 Petabits per second using 
Weyl fermions, which can also be used as an electric field sensor

,

G. N. Tsigaridas, A. I. 
Kechriniotis, C. A. Tsonos and 
K. K. Delibasis, A proposed 
device for controlling the flow 
of information based on Weyl 
fermions, arXiv:2307.06489 
[quant-ph], Sensors 24 (2024) 
3361, DOI: 
10.3390/s24113361

Schematic diagram of a device for controlling the flow of information based on Weyl 
particles.
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Controlling the spatial distribution of Weyl particles using 
appropriate magnetic fields

,

In the same article, we have also shown that it is possible to fully
control the transverse spatial distribution, f(x,y), of Weyl particles
using appropriate magnetic fields along the direction of motion of the
particles, which can be used to guide Weyl fermions through the
proposed device.
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General form of degenerate solutions for 
massless Dirac particles
In our effort to find general forms of degenerate solutions to the Dirac
equation, we have found that all spinors of the form

are degenerate corresponding to massless particles or antiparticles
propagating along a direction in space defined by the angles (θ, φ) in
spherical coordinates.

Here, 𝑐1, 𝑐2 are arbitrary complex constants, h is an arbitrary real
functions of the spatial coordinates and time, and 𝑢↑, 𝑢↓, 𝑣↑, 𝑣↓, are the
eigenvectors describing the spin state of the particles or antiparticles.
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Electromagnetic 4-potentials corresponding 
to these solutions
The electromagnetic 4-potentials corresponding to these spinors are of
the form

where

Here, s is an arbitrary real function of the spatial coordinates and time.
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Electromagnetic fields corresponding to these 
solutions

The electromagnetic fields corresponding to these 4-potentials are

Here 𝑠𝑞 =
𝑠

𝑞
, where q is the electric charge of the particles.
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A simplified form of these fields for particles 
moving along the +z-direction
Since the choice of the coordinate system is arbitrary, the direction of
motion of the particles can be set to correspond to the +z-direction
without loss of generality. In this case θ=φ=0 and the electromagnetic
fields take the simpler form
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An interesting remark regarding these 
solutions
Setting h = E(z-t) in the case of particles or h = -E(z-t) in the case of
antiparticles, where E is an arbitrary real constant corresponding to the
energy of the particles (or antiparticles), the degenerate spinors take
the familiar form

corresponding to free massless particles or antiparticles moving along
the +z-direction with energy E.

( ) ( ) ( ) ( )1 2 1 2exp , expp ac u c u iE z t c v c v iE z t
   

    = + −  = + − −   



An example regarding electromagnetic waves

Setting

where 𝐸𝑤1, 𝐸𝑤2, 𝛿𝑤1, 𝛿𝑤2, 𝑘𝑤 are real constants, the additional
electromagnetic fields take the form

corresponding to a plane electromagnetic wave, e.g., a laser beam, of
arbitrary polarization, propagating along the +z – direction.
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An example regarding electromagnetic waves 
(2)
Thus, the state of massless Dirac particles in degenerate states
will not be affected in the presence of a plane electromagnetic
wave, e.g., a laser beam, of arbitrary polarization, propagating
along the direction of motion of the particles.



On the transition from degenerate to non-
degenerate solutions as the particles acquire mass

Another very interesting aspect of degeneracy as defined in [1], is the
study of the transition from a non-degenerate state corresponding to
massive particles to a degenerate one corresponding to massless
particles.

Specifically, it has been found that in the case of massive particles, the
spinors

are still solutions to the Dirac equation for the 4-potentials

( ) ( ) ( ) ( )1 2 1 2exp , , , ,  exp , , ,p ac u c u ih x y z t c v c v ih x y z t
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On the transition from degenerate to non-
degenerate solutions as the particles acquire mass(2)

However, these spinors are no longer degenerate, and consequently they are
not solutions to the Dirac equation for the more general 4-potentials

Indeed, substituting these spinors into the massless Dirac equation for the
above 4-potentials, it takes the form

in the case of particles, and

in the case of antiparticles.
Here are the unperturbed spinors for particles and antiparticles
respectively, and e is the ratio of the rest energy of the particles to their
total energy (e=m/E in natural units)
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On the transition from degenerate to non-
degenerate solutions as the particles acquire mass(3)

In the case that the rest energy of the particles is much smaller than their
total energy, or e<<1, the factor

takes the simple form e s. Thus, as the mass of the particles increases, the
function s should be restricted to smaller values, suppressing the effect of
degeneracy.

On the other hand, as the mass of the particles decreases, the function s is
allowed to take larger values, and the degeneracy becomes more evident.

Finally, as the mass of the particles tends to zero, there is no restriction on
the values of the function s, and the theory of degeneracy becomes fully
applicable.

1
1

1 e
s

e

 −
−

 +
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



Important remark

The parameter e, which is the ratio of the rest energy of the particles to
their total energy, e=mc^2/E, becomes also negligible if the total energy
of the particles is much higher than their rest energy, E>>mc^2.

Thus, the theory of degeneracy is also expected to be valid for high
energy particles.

Furthermore, the higher the total energy of the particles compared to
their rest energy, the more evident the effects of degeneracy are
expected to become.



Degenerate solutions for massive particles (1)

All the previous results consider degenerate solutions for free Weyl and
massless Dirac particles. However, an interesting question is the
following:

Are there degenerate solutions for massive particles, and if yes, what is
their physical interpretation?



Degenerate solutions for massive particles (2)

Indeed, it has been shown that all spinors of the form

corresponding to particles with arbitrary mass m are degenerate.

The electromagnetic 4-potentials connected to the above spinors are the
following:

Here, 𝑐1 is an arbitrary complex constant, 𝜉 ≠ 𝑛𝜋, 𝑛 ∈ ℤ is a real parameter
and f is an arbitrary real function of the spatial coordinates and time.
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Degenerate solutions for massive particles (3)

Further, according to Theorem 5.4 in [1], these spinors will also be
solutions to the Dirac equation for an infinite number of 4-potentials,
given by the formula

where

and s is an arbitrary real function of the spatial coordinates and time.

b a s  = +

( ) ( )0 1 2 3, , , 1,0,sin , cos     = −



On the physical interpretation of these results 
in the framework of quantum tunneling (1)
Setting 𝜉 = 𝑛𝜋 + 𝜋/2, 𝑛 ∈ ℤ the degenerate spinors take the simpler
form

which are also solutions to the one dimensional Dirac equation

for zero 4-potential.
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On the physical interpretation of these results 
in the framework of quantum tunneling (2)
In general, it can be shown that all spinors of the form

are degenerate solutions to the Dirac equation for zero 4-potential
corresponding to single particles with spin perpendicular to the z-axis
or pairs of massive particles or antiparticles moving along the z-axis in a
potential barrier with height equal to the energy of the particles.
Further, the spin of the particles is opposite to each other, so that the
projection of the total spin on the z-axis is equal to zero.
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On the physical interpretation of these results 
in the framework of quantum tunneling (3)



The electromagnetic fields corresponding to 
these degenerate solutions
According to Theorem 5.4 in [1], these spinors will also be solutions to
the Dirac equation for the 4-potentials

corresponding to the following electromagnetic fields

Here, s is an arbitrary real function of the spatial coordinates and time
and 𝑠𝑞 =

𝑠

𝑞
, where q is the electric charge of the particles.
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A specific example regarding electromagnetic 
waves (1)
Setting

the electromagnetic fields take the form

corresponding to a plane electromagnetic wave, of arbitrary
polarization, propagating along the y-direction.

Here, 𝐸𝑤1, 𝐸𝑤2, 𝛿𝑤1, 𝛿𝑤2 are arbitrary real constants corresponding to
the amplitude and phase of the x and z component of the electric field
of the wave respectively, and 𝑘𝑤 is a real parameter corresponding to
the wavenumber.
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A specific example regarding electromagnetic 
waves (2)
Further, since the choice of the coordinate system is arbitrary,
the y-direction can be set to correspond to any desired
direction in space, perpendicular to the direction of motion of
the particles.

Thus, the state of the particles inside the potential barrier, and
consequently the transmittance though the barrier, will not be
affected by the presence of a plane electromagnetic wave, e.
g. a laser beam, with arbitrary polarization, propagating along
any direction perpendicular to the direction of motion of the
particles.



On the practical applications of these results

The property of particles described by degenerate spinors to
be in the same state under a wide variety of different
electromagnetic fields, provides the opportunity to apply
certain combinations of electric and magnetic fields in order
to manipulate the motion of the particles in free space,
without affecting their state inside the potential barrier, and
consequently, the transmittance through the barrier.

More details can be found in [2].



Nearly degenerate solutions

An interesting question is what happens in the case of small
deviations from the conditions for degeneracy.

For example, what happens if the energy of the particles is not
exactly equal to the height of the potential barrier?



Nearly degenerate solutions (2)

We have found that, in this case, the Dirac equation takes the form

where is the degenerate Dirac spinor and is

a small factor describing the deviation of the energy of the particles

from the exact condition for degeneracy (E=V0).
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Nearly degenerate solutions (3)

Consequently, the terms

can be ignored, provided that e << 1 and e s << m.

The physical interpretation of these conditions is that the deviation of
the energy of the particles from the exact condition for degeneracy
(E=V0) as well as the energy corresponding to the electromagnetic
potential induced by the function s must be much smaller than the rest
energy of the particles.
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Nearly degenerate solutions (4)

Thus, the results obtained regarding the properties of degenerate
solutions, will still be valid in the case of small deviations from the
condition for degeneracy (E=V0), provided that the arbitrary function s
takes sufficiently small values, so that the energy corresponding to the
electromagnetic potential induced by this function is much smaller
than the rest energy of the particles.

In addition, the larger the deviation from the exact degenerate solution
is, the smaller the values of the function s should be, as it is expected
from a physical point of view.



Degenerate wave-like solutions to the Dirac equation for 
massive particles

,

It can be verified that all spinors of the following form

where c1 is an arbitrary complex constant, α , β are real constants, h is an arbitrary 
real function of the spatial coordinates and time and 

are degenerate solutions to the Dirac equation.
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Electromagnetic 4-potentials corresponding to these solutions

,
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Electromagnetic fields corresponding to these solutions

,
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Additional electromagnetic 4-potentials and fields 
corresponding to these solutions

,
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As usually, s is an arbitrary real function of the spatial coordinates and time



Interesting remark (1)

,

If the following conditions hold
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the electromagnetic 4-potentials and fields become zero. 



Interesting remark (2)

,

The phase velocity of the electromagnetic waves, defined as

is higher than the speed of light in vacuum. However, this does not violate the special
theory of relativity since a sinusoidal wave with a unique frequency does not
transmit any information. Indeed, the phase velocity of an electromagnetic wave
when traveling through a medium can exceed the speed of light in vacuum, as it
happens in most glasses at X-ray frequencies and in unmagnetized plasmas.
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Interesting remark (3)

,

The frequency of the oscillation is proportional to the mass of the particles

and takes particularly high values. For example, in the case of electrons

corresponding to photons with energy higher than 2.05 MeV, in the region of
Gamma/X-rays. Obviously, in the case of heavier particles, e.g., protons , the
frequency of the oscillation and the energy of the photons take much higher values.
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Interesting remark (4)

,

The expected values of the projections of the spin of the particles along the x, y, and 
z-axes, defined through the following formulae 

are synchronized with the magnetic component of the electromagnetic fields 
corresponding to these solutions. 
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A general method for obtaining degenerate solutions to 
the Dirac and Weyl equations

,

In the article 
G. N. Tsigaridas, A. I. Kechriniotis, C. A. Tsonos and K. K. Delibasis, A general method for obtaining degenerate 
solutions to the Dirac and Weyl equations and a discussion on the experimental detection of degenerate states, 
arXiv:2210.02003 [quant-ph], Ann. Phys. (Berlin) 2200647 (2023) DOI: 10.1002/andp.202200647

we have shown that all spinors of the following  form
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Electromagnetic 4-potentials corresponding to these 
solutions

,

are degenerate solutions to the Dirac equation for the following 4-potentials: 

0a h=
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2 2 secRa f =

3 2sin Ia h f= − −

where f1I , f2R , f2I , h are arbitrary real functions of the spatial coordinates and time.



Coordinate transformation

,

The functions                                                    are related to f1I , f2R , f2I  through the 
following transformation of the coordinates 
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Thus, for any combination of the arbitrary functions                                                             
one can automatically construct a degenerate solution to the Dirac equation 
corresponding to an infinite number of real 4-potentials, given by the equations in 
the previous slight.  
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Important remarks

,

➢Massive particles described by those spinors should be localized, both 
in space and time, because otherwise the solution would be divergent

➢All the information regarding the 4-potentials is incorporated into the 
phase of the spinors

➢ The expected values of the projections of the spin of the particles 
along the x-, y-, and z-axes are functions of the mass of the particles 
and the spatial and temporal coordinates

➢However, in the special case that                          the expected values of 
the projections of the spin of the particles along the x-, y-, and z-axes 
become all equal to zero. 

cosk m =



Degenerate solutions for massless Dirac particles

,

In the case of massless particles, the degenerate solutions take the following form:
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Important remarks

,

➢ The localization of the spinors is no longer required, and consequently 
massless Dirac particles can move freely throughout space and time. 

➢All the information regarding the 4-potentials is incorporated into the 
phase of the spinors, as in the case of massive Dirac particles

➢ The expected values of the projections of the spin of the particles 
along the x, y, and z-axes are all constants



Degenerate solution for Weyl particles

,
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Final remarks

,

➢As in the case of massless Dirac particles, Weyl particles can move
freely throughout space and time.

➢ The phase factor containing the information regarding the
electromagnetic 4-potentials and fields is the same for massive Dirac,
massless Dirac and Weyl particles.

➢ For any combination of the arbitrary real functions

one can automatically construct degenerate solutions for massive Dirac,
massless Dirac and Weyl particles, corresponding to the same
electromagnetic 4-potentials and fields.

( ) ( ) ( )1 0 1 2 0 2 0, , ,I R If s s f s f s



A proposed method for experimentally detecting the transition 
between degenerate and non – degenerate states

,



General remarks - Conclusions (1)

In conclusion, we have shown that all Weyl particles, and under certain
conditions Dirac particles, interact with the electromagnetic fields in
new, unexpected ways, being able to exist in the same quantum state
under a wide variety of different electromagnetic fields, including both
spatially constant fields and electromagnetic waves.

We have also shown that Weyl particles can exist in different states in
zero electromagnetic field, either as free particles, or in localized states.

The localization, as well as the energy, of the particles can be fully
controlled using simple electric fields, which can be easily realized in
practice.



General remarks - Conclusions (2)

Based on these results we have proposed a quantum parallel switch
based on Weyl fermions, which is expected to be able to control the
flow of information at a rate of up to 100 Petabits per second, offering
also several advantages over conventional electronics, as low power
consumption and robustness against electromagnetic perturbations,
rendering it ideal for a variety of applications in the fields of
telecommunications, signal processing, quantum computing, etc.

We have also proposed a method for controlling the spatial distribution
of Weyl particles using appropriate magnetic fields



General remarks - Conclusions (3)

We have provided degenerate solutions to the Dirac equation
corresponding to massive particles in potential barriers.

We have also calculated the family of electromagnetic fields that
should be applied in order to control the state of the particles in the
region of the potential barrier, without affecting the state of the
particles inside the potential barrier, and consequently the
transmittance through the barrier.



General remarks - Conclusions (4)

We have provided several classes of degenerate solutions
corresponding to massless Dirac and Weyl particles and we have
calculated the electromagnetic 4-potentials and fields corresponding to
these solutions.

It has been shown that the state of the particles will not be affected in
the presence of an electric field, of arbitrary magnitude and time
dependence, applied along their direction of motion, or a plane
electromagnetic wave, e.g. a laser beam, of arbitrary polarization,
propagating along the direction of motion of the particles.

The transition from degenerate to non-degenerate states as the
particles acquire mass has also been studied.



General remarks - Conclusions (5)

We have provided a class of wavelike solutions to the Dirac equation
for massive particles, where the spin of the particles is synchronized
with the magnetic component of the electromagnetic fields
corresponding to these solutions.

Finally, we have developed a general method for systematically
obtaining degenerate solutions to the Dirac (both for massive and
massless particles) and Weyl equations and we have proposed a
method for experimentally detecting the transition between
degenerate and non-degenerate states.



Thank you for your attention…
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